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Introduction 
 
Assembly language has typically been the programming language of choice for 
embedded system programmers.  Looking into the 8-bit microcontroller offerings from 
different vendors, one finds that these microcontrollers can be programmed using the 
high-level C programming language as well as assembly.  Some microcontrollers have 
even been designed with high-level languages in mind as a means of programming, thus 
alleviating common high-level language bottlenecks.  The embedded source code 
examples found in this paper will be based on ATMEL Corporation’s 8-bit AVR 
microcontroller, which was designed for programming using the high-level C language.  
In order to program microcontrollers using the C language a compiler is required to 
translate the high-level language in to low-level machine instructions the microcontroller 
can execute.  Utilizing a high-level language when programming microcontrollers offers 
key advantages over low-level languages while introducing a single ‘gotcha’ that can be 
overcome with careful attention and planning. 
 
 
Assembly versus C:  The Line of Compromise 
 
As embedded projects get bigger and bigger, it becomes more complicated to keep track 
of everything done in a project in assembly (i.e. register usage).  An increasing amount 
of time is spent on these housekeeping issues.  Working in a high-level language, will 
allow the compiler to handle a lot of this work allowing the embedded programmer more 
time to do actual work and develop their embedded program. 
 
A small project may be done quickly in assembly, but a large project will take 
considerable amount of development time.  If one takes the same project and writes the 
embedded source using a high-level language the small project would take 
approximately the same amount of time to complete.  However, the large project would 
take at least twice as long to complete in assembly than it would if a high-level language 
were used.  It’s a fact that the source code of an assembly program is three to five times 
larger than the same source code written in C. 
 
 
Benefits and Consequences of High-Level Languages 
 
The first major benefit of a high-level language is portability.  Using a high-level 
language allows the embedded programmer to remove the specifics about the target 
architecture and focus on a functional implementation rather than a symbolic or 
hardware specific implementation.  This allows for the embedded source to be re-
targeted to another architecture with little or no changes to the actual source code. 
 
Readability is the second advantage.  A high-level language allows for easier reading 
(and writing) because the embedded source resembles that of written languages.  The 
symbols and instructions appear in the programmer’s native tongue rather than 
computer language.  Accompanying readability is maintainability.  Programs are easier 
to maintain when written in a high-level language because they easier to read. 
 
The final major advantage is modularity.  Modularity allows the embedded engineer to 
collect one’s embedded source into modules.  These modules can then be included into 



various projects.  Creating modules allows for reusability, or the re-using of source code 
in different projects.  Utilizing the modularity of high-level languages one can significantly 
decrease a project’s development time assuming that one is in possession of an 
embedded code library which contains rudimentary functions (i.e. Accessing the Serial 
Peripheral Interface). 
 
Despite the advantages of programming using a high-level language, there does exist a 
consequence concerning the effectiveness of the compiler.  Programming using a high-
level language can result in reduced code efficiency, as the compiler may not translate 
ones high-level source to the optimum machine code.  This consequence can be easily 
overcome or minimized by selecting a microcontroller which was designed to be 
programmed using a high-level language and by writing ones high-level source properly.  
Both topics will be discussed, the later being the primary focus of this paper. 
 
 
Variable Data Types 
 
Declaring a variable in assembly requires the embedded system programmer to allocate 
the register(s) necessary for variable storage.  In systems with more variables than 
registers, one first needs to determine the lifetime of the variable.  If the lifetime of the 
variable is finite then properly managing the resources should not be a difficult task.  
However, if the lifetime of the variable is infinite and the variables register is needed 
temporarily for another variable or task, then the register contents will need to be stored 
to memory and restored from memory once the register is no longer needed.  Another 
benefit of the C programming language is in the handling of data types.  The C compiler 
takes your variable declarations and generates the necessary code and allocation 
schemes for these variables. 
 
The embedded designer must be careful as to the data types used to declare ones 
variables, as the C language specification does not control the sizes of data types.  
When considering 8-bit microcontrollers, typically a “char” is 8-bits, a “short” and “int” are 
16-bits, and a “long” is 32-bits.  It is strongly recommended to avoid using 16- and 32-bit 
variables as 8-bit microcontrollers typically have limited (if any) support for 16-bit 
operations, let alone 32-bit operations.  Utilizing “long” data types in your embedded 
source will adversely affect the performance of your embedded application by 
decreasing performance and increasing your code size footprint in comparison to 
implementations using “int” data types. 
 
Since our target is an 8-bit microcontroller, the use of 16- and 32-bit variables should not 
be used except under necessity.  The following two examples details the code size 
comparisons for a simple counter loop for both 8- and 16-bit variables in C and their 
corresponding assembly code.  These code snippets were taken from the C compiler 
LST output file, which details the translations from the high-level language to low-level 
machine language.  The compiler’s optimization level was disabled. The comments were 
added for the readers’ benefit.   
 
 
Example 1:  8-bit Counter Loop 
  
unsigned char count8 = 5; /* Declare a Variable, Assign a Value */ 
//      LDI   R16, 5        ; Initialize Variable 



 
do      /* Start Loop */ 
{ 
} while (--count8);  /* Decrement Counter & Check if Zero */ 
// ?0004:  DEC   R16        ; Decrement R16 
//         BRNE  ?0004        ; Branch if Not Equal 
 
 
Example 2:  16-bit Counter Loop 
 
unsigned char count16 = 5; /* Declare a Variable, Assign a Value */ 
//      LDI   R24, LOW(5)       ; Initialize Variable, Low Byte 
//      LDI   R25, 0        ; Initialize Variable, High Byte 
 
do      /* Start Loop */ 
{ 
} while (--count16);  /* Decrement Counter & Check if Zero */ 
// ?0004:  SBIW  R24, LWRD(1)       ; Subtract 16-bit Value 
//         BRNE  ?0004        ; Branch if Not Equal 
 
 
Carefully examining the assembly outputs of the C compiler, one notices the differences 
between the 8- and 16-bit counters and the resources used.  One finds that only one 
register R16 is used in the 8-bit implementation, while two registers R24 and R25 are 
used for 16-bits.  One also shall find that the pre-decrement is implemented differently.  
The pre-decrement is a simple DEC instruction for the 8-bit implementation, while for 16-
bit the SBIW (Subtract Immediate from Word) is used – a dedicated instruction for 16-bit 
data handling built into the AVR microcontroller! 
 
The extra register in Example 2 has negative consequences.  Example 1 requires three 
words (or six bytes) of code space, while Example 2 requires four words.  Examining the 
performance of both examples, Example 2 requires six more clock cycles, as the SBIW 
is a two-cycle instruction while DEC is a single cycle instruction, plus the extra single 
cycle LDI instruction required to initialize the second register.  Clearly, it is advisable to 
use the smallest data type possible to meet your needs; you will receive reduced code 
size and increased performance as a result. 
 
One should be aware that the C programming language does not offer a “bit” data type, 
a common need for embedded programs.  As a result, if a single bit variable is needed 
the embedded designer is advised to use the 8-bit “char” data type.  Although 
microcontrollers do not support bit variables they do support bit manipulation, a topic 
addressed later on in this paper. 
 
 
Global versus Local Variables 
 
Just as different variable data types exist, different types of variables also exist.  The 
embedded designer is left the task of declaring the variable and should consider the 
variables’ function to determine whether it should be global or local.  A local variable is a 
variable that is used only inside a single function or routine and should be declared 
within that function.  A global variable on the other hand is utilized in more that one 



function and/or file and should be declared outside the function block.  See Example 3 
for further details.  
 
Local variables are typically assigned to the microcontroller’s register file.  A register is 
allocated for the variables use until the variable is no longer referenced or the end of the 
function has been reached. 
 
A global variable resides in the microcontroller’s data memory.  A location in the 
microcontroller’s SRAM is reserved for the global variable use and cannot be used by 
other resources.  Prior to modification or use the global variable must first be loaded into 
a scratch register, once modified it is necessary to update the global variable’s SRAM 
location with its new contents. 
 
 
Example 3:  Global and Local Variables 
 
char global;   /* This is a Global Variable */ 
 
__C_task void main (void) 
{ 
 char local;   /* This is a Local Variable */ 
 
 global -= 45;  /* Subtraction with Global Variable */ 
//         LDS   R16, LWRD(global) ; Load Variable from SRAM to  
                                    ;   Register R16 
//         SBIW  R16, LOW(45)       ; Perform Subtraction 
//         STS   LWRD(global), R16  ; Store Modified Data to SRAM 
 
 local -= 34;  /* Subtraction with Local Variable */ 
//         SUBI  R16, LOW(34)       ; Perform Subtraction Directly on 
                                    ;   Local Variable in Register R16 
} 
 
Both the LDS and STS (Load and Store Direct to SRAM) instructions presented above in 
Example 3 are two word and two-cycle instructions.  Operating on the global variable 
requires ten bytes of code space and five clock cycles for execution while the local 
variable requires only two bytes and a single clock cycle.  Clearly it is more 
advantageous to declare variables locally whenever possible as one will have a much 
more efficient embedded source. 
 
A local variable whose contents must be retained between multiple calls of the function 
can be declared using the keyword “static”.  If a local variable is declared as static, it is 
loaded into a scratch register and stored back to SRAM at the beginning and end of the 
function respectively.  Compared to global variables, static variables will provide 
optimized code if the variable is accessed more than once within the subroutine. 
 
If global variables are absolutely necessary within your embedded source, there are a 
few hints, which may either improve performance or reduce the number of required 
global variables.  Reducing the number of global variables may be possible by utilizing 
the passing of function parameters (in registers) rather then declaring multiple global 
variables.  A performance increase may also be possible when using global variables, by 



loading the variable in to a register and manipulating the register rather than 
subsequently accessing the global variable from within the same function. 
 
 
Optimization of Global Variables 
 
An easy way of optimizing global variables can be achieved by collecting them into 
structures whenever possible.  A structure (or record) is a grouping of one or more 
variables, including those of different data types, combined together under a single 
name for convenient data handling.  Grouping the global variables in structures allows 
the compiler to generate code, which accesses these variables indirectly via pointers 
rather than directly addressing memory locations.  See Example 4. 
 
 
Example 4:  Collecting Global Variable in Structures 
 
typdef struct 
{ 
 char sec; 
} t; 
 
t global;                     /* Declare a Global Structure */ 
 
char min;    /* Declare a Global Variable */ 
 
 
__C_task void main (void) 
{ 
 t *time = &global;      /* Pointer to a Global Structure */ 
//        LDI    R30, LOW(global)   ; Initialize Z Pointer, Low Byte 
//        LDI    R31, (global >> 8) ; Initialize Z Pointer, High Byte 
 
 if (++time->sec == 60)  /* If Variable sec Equals 60 */ 
 { 
//        LDD    R16, Z+2  ; Load with Displacement 
//        INC    R16   ; Increment 
//        STD    Z+2, R16           ; Store with Displacement 
//        CPI    R16, LOW(60)       ; Compare 
//        BRNE   ?0005              ; Branch if Not Equal 
 } 
//  ?0005: 
 
 if (++min == 60)        /* If Variable min Equals 60 */ 
 { 
//        LDS    R16, LWRD(min)     ; Load Direct from SRAM 
//        INC    R16                ; Increment 
//        STS    LWRD(min), R16     ; Store Direct to SRAM 
//        CPI    R16, LOW(60)       ; Compare 
//        BRNE   ?0006              ; Branch if Not Equal 
 } 
//  ?0006: 
} 
 
 



The Z-pointer, one of three 16-bit memory pointers in the AVR is comprised of registers 
R31:R30 and is used along with the LDD and STD (Load and Store with Displacement) 
instructions to access the data memory when accessing global variables via structures.  
As in Example 3, the LDS and STS instructions are used when operating on the global 
variable “min”.  In the above example, the structured approach required only ten bytes of 
code while the global approach required fourteen bytes.  It must be noted that the 
structured approach code benchmark doesn’t include the required four bytes to initialize 
the Z-pointer.  Adding the four bytes to initialize the Z-pointer and then comparing the 
two approaches yields the same fourteen byte outcome for this example, however if 
more than one variable resides within the structure then it would be more efficient to 
group the global variables inside structures as in the example presented above.   
 
 
Accessing Single Bits 
 
It is typical of embedded applications to need to address specific bits of an I/O register or 
single bit of a software flag register.  There are two different means of manipulating bits 
in the C programming language both will be discussed, as well as their benefits and 
consequences.  The first approach that will be discussed is Bit Masking and is 
demonstrated in Example 5. 
 
 
Example 5:  Bit Manipulation via Masking 
 
/* Macros Definition */ 
#define BIT(x)            (1 << (x))      /* Bit Position */ 
 
SFR_B (PORTC, 0x15);                      /* PORTC Data Register */ 
 
__C_task void main (void) 
{ 
 PORTC |=  BIT(0);       /* Set 0th Bit Equal to ‘1’ */ 
//     SBI    0x15, 0x00         ; Set Bit in I/O Register 
 
 PORTC &= ~BIT(0);       /* Set 0th Bit Equal to ‘0’ */ 
//        CBI    0x15, 0x00         ; Clear Bit in I/O Register 
 
      PORTC ^=  BIT(0);       /* Toggle the 0th Bit */ 
//        LDI    R16, 1             ; Load Immediate to R16 
//        IN     R17, 0x15          ; Read I/O Register into R17 
//        EOR    R17, R16           ; Exclusive OR Registers R16 & R17 
//        OUT    0x15, R17          ; Output R17 to I/O Register 
 
 if ( PORTC & BIT(0) )   /* Test 0th Bit, Is 0th Bit Set? */ 
//        SBIS   0x15, 0x00         ; Skip if Bit Set in I/O Register 
//        RJMP   ?0001              ; Relative Jump 
 { 
  /* Insert Instructions Here */ 
 } 
//  ?0001: 
} 
 
 



Masking provides efficient output from the high-level compiler, notice the single SBI and 
CBI instructions used for setting and clearing bits.  The above bit-mask approach is 
guaranteed to work under all C compilers and the user has complete control over all bits 
within a byte.  Bit-masks may be slightly more confusing to read but this can be 
overcome by implementing simple pre-processor macros for common functions as 
demonstrated below.  Macros will be discussed in more depth as a topic later on in this 
paper. 
 
#define SETBIT(x,y)     (x |=  (y))     /* Set Bit y in Byte x */ 
#define CLEARBIT(x,y)   (x &= ~(y))     /* Clear Bit y in Byte x */ 
#define CHECKBIT(x,y)   (x &   (y))     /* Check Bit y in Byte x */ 
 
A second approach to accessing bits is using a bit-field structure.  A structure is a group 
of differently typed variables.  Bit-fields can be implemented for both I/O and SRAM data 
memory.  In a bit-field, as seen in Example 6, when accessing an I/O location one needs 
to treat the I/O location as data memory.  After looking at the bit-field example, one can 
see that this approach is much clearer and easier to read and understand. 
 
 
Example 6:  Bit Manipulation via Bit Fields 
 
typedef struct 
{ 
 unsigned BIT0 : 1, 
               BIT1 : 1, 
               BIT2 : 1, 
               BIT3 : 1, 
               BIT4 : 1, 
               BIT5 : 1, 
               BIT6 : 1, 
               BIT7 : 1 
} IOREG; 
 
#define PORTC    (* (IOREG *) 0x35) /* Locate PORTC in I/O Memory */ 
 
 
__C_task void main (void) 
{ 
 PORTC.BIT0 = 1;         /* Set 0th Bit Equal to ‘1’ */ 
//         LDI   R30, LOW(53)       ; Initialize Z Pointer, Low Byte              
//         LDI   R31, (53) >> 8     ; Initialize Z Pointer, High Byte 
//         LD    R16, Z             ; Load R16 with SRAM Location Z 
//         ORI   R16, 0x01          ; OR Immediate with R16 
//         ST    Z, R16             ; Store R16 to SRAM Location Z 
 
 PORTC.BIT0 = 0;          /* Set 0th Bit Equal to ‘0’ */ 
//         LDI   R30, LOW(53)       ; Initialize Z Pointer, Low Byte              
//         LDI   R31, (53) >> 8     ; Initialize Z Pointer, High Byte 
//         LD    R16, Z             ; Load R16 with SRAM Location Z 
//         ANDI  R16, 0xFE          ; AND Immediate with R16 
//         ST    Z, R16             ; Store R16 to SRAM Location Z 
 
 if ( PORTC.BIT0 )        /* Test 0th Bit, Is 0th Bit Set? */ 
//         LDI   R30, LOW(53)       ; Initialize Z Pointer, Low Byte              



//         LDI   R31, (53) >> 8     ; Initialize Z Pointer, High Byte 
//         LD    R16, Z             ; Load R16 with SRAM Location Z 
//         SBRS   R16, 0x00         ; Skip if Bit Set Register Set 
//         RJMP   ?0001             ; Relative Jump 
 { 
  /* Insert Instructions Here */ 
 } 
//  ?0001: 
} 
 
 
One should note that the same operations are performed in Examples 5 and 6, just 
using a different method for bit addressing.  The bit-mask approach is clearly more code 
efficient then the bit-field approach, not to mention the verbose overhead required for 
using the LD and ST instructions also yields a performance boost.  A problem still does 
exist for the bit-field approach. 
 
The C Standard does not specify the allocation order of the bit-field.  In other words the 
allocation of the bits (i.e. left to right or right to left) is compiler dependent and can vary 
from compiler to compiler.  This proves to be a problem when portability is a concern.  If 
one is using bit-fields, it is recommended to read the compiler manual to determine the 
allocation order of bits for proper I/O Memory alignment.  Going one step further, the C 
Standard only dictates that only “int” and “unsigned” are valid data types for bit-fields.  
Some compilers, like the example above, have extended the specification to include 
“unsigned char” and allocate only one byte for the aforementioned structure.  Compilers 
that have not extended the specification to include “unsigned char” and allocate two 
bytes, the structure implementation will not work. 
 
As an aside, the topic of Endianness, or the storage order of a value larger than 8-bits in 
memory, deserves discussion.  Two types of microcontrollers exist, Big Endian and Little 
Endian.  Big endian processors store the Most Significant Byte (MSB) first followed by 
the Least Significant Byte (LSB) while little endian processors store the LSB first 
followed by the MSB.  One can clearly see that if a value is stored using one endian and 
read using the other endian the data read will be incorrect.  The C Standard does not 
specify endianness, but the environments for the same microcontroller architecture 
would be the same making endianness moot.  However, if the embedded designer rolls 
their own code and then ports the application to another architecture endianness could 
come into play. 
 
 
Functions versus Macros 
 
A function can be thought of as a means of encapsulating some computation or 
algorithm, allowing an embedded engineer to utilize the routine without worrying about 
its implementation.  Functions are equivalent to subroutines in assembly.  Functions are 
typically composed of two parts – the Function Prototype and Function Body.  The 
prototype is simply a declaration outlining the return type and parameters while the body 
contains the actual implementation of the algorithm and/or computation.  See Example 
7. 
 
/*** Function Prototype ***/ 
return-type function-name ( parameter declarations [if any] ); 



 
/*** Function Body ***/ 
return-type function-name ( parameter declarations [if any] ) 
{ 
 /* Declarations & Statements */ 
} 
 
A macro is simply a substitution, after the definition subsequent occurrences of the token 
name will simply be replaced by the replacement text.  Macros can also be constructed 
to accept arguments and evaluate simple expressions.  A template of a macro definition 
is shown below.  See Example 7. 
 
#define macro-name replacement-text         /* Macro Definition */ 
 
 
Example 7:  Using Functions and Macros 
 
/*** Macro Definition ***/ 
#define mMAX(A,B)  ( (A) > (B) ? (A) : (B) ) 
 
/*** Function Definition ***/ 
char fMAX ( char A, char B) 
{ 
 if ( A > B)             /* Is A Greater than B */ 
//         CP    R17, R16           ; Compare R16 and R17 
//         BRCS  ?fMAX_0            ; Branch if Carry Set 
    return A;            /* Yes, Return A */ 
      else return B;          /* No, Return B */ 
//         MOV   R16, R17           ; Copy Contents of R17 to R16 
// ?fMAX_0: 
//         RET                      ; Return from Subroutine 
} 
 
__C_task void main (void) 
{ 
 char varA = 15;         /* Initialize varA = 15 */ 
//         LDI   R16, 15 
 char varB = 31;         /* Initialize varB = 31 */ 
//         LDI   R17, 31 
 char result;            /* Allocate Variable result */ 
  
 /*** Macro Implementation ***/ 
 result = mMAX (varA, varB); 
//         CP    R17, R16           ; Compare R16 and R17 
//         BRCC  ?0001              ; Branch if Carry Cleared 
//         MOV   R24, R16           ; Copy Contents of R16 to R24 
//         RJMP  ?0002              ; Relative Jump to End 
// ?0001: 
//         MOV   R24, R17           ; Copy Contents of R17 to R24 
 
 /*** Function Implementation ***/ 
 result = fMAX (varA, varB); 
// ?0002: 
//         RCALL fMAX               ; Call fMAX Subroutine 
//         MOV   R24, R16           ; Copy Contents of R16 to R24 
} 



 
 
The previous code example generates both a macro and function performing the same 
simple task.  As one can see above, the macro implementation in this example is more 
code efficient than the function implementation.  One notices that the function 
implementation requires significant overhead as fMAX needs to called using RCALL and 
then return to the main function after completion using the RET instruction.  As a general 
rule, functions, which compile to four lines of assembly code or less can in most cases 
be more efficiently handled as macros. 
 
 
Loops 
 
An iteration loop simply directs the microcontroller to repeat a certain set of operations or 
a task until a specific condition is achieved.  The C Standards includes three methods for 
generating iteration loops and each method will be discussed.  Example 8 demonstrates 
the three different loop types operating on the same expression. 
 
A template of a while statement is shown below.  The first task of the while loop is to 
evaluate the expression to either true or false (or zero or non-zero).  If the expression is 
true, the statement(s) are executed and returns to the top of the while loop to re-evaluate 
the expression.  The loop continues until the expression result is either zero or false at 
which point the program jumps to the instruction immediately following the loop. 
 
while ( expression ) 
{ 
 /* Statement(s) */ 
} 
 
Closely related to while loops are do…while loops, as shown below.  A do…while loop is 
slightly different than a while loop, as the statement body is executed at least once.  In a 
while loop, if the expression is false (or zero) initially the statements inside the loop body 
are never executed.  The primary difference between the two is that the test expression 
resides at the end of the do…while loop instead of the beginning.  Once the statement is 
executed the expression is evaluated, if true it will loop back to the do and execute the 
expression again, if false the following statement will be executed. 
 
do 
{ 
 /* Statement(s) */ 
} while ( expression ); 
 
Probably the most common of the iterative loops is the for loop.  This loop allows the 
embedded engineer to initialize a variable (expression1), evaluate a condition 
(expression2), and modify a variable (expression3).  Expression1 is executed and 
evaluated first and is typically an initialization of the variable used in constructing the 
loop.  Expression2 is evaluated next and usually contains the conditional part of the 
statement, similar to that of the expression in the while and do…while loops.  If 
expression2 is true the statement body is executed, if false execution ceases and the 
statement following the loop is executed.  Finally, expression3 is evaluated and the loop 
then returns and evaluates expression2 again.  One should note that expression1 is only 



evaluated initially and expression2 and expression3 are evaluated under each iteration 
until expression2 is false (or zero). 
 
for ( expression1; expression2; expression3 ) 
{ 
 /* Statement(s) */ 
} 
 
 
Example 8:  Loops 
 
__C_task void main (void) 
{ 
 char counter8 = 0;    /* Initialize counter8 */ 
//        LDI   R16, 0          ; Initialize R16 
 
 /*** Example: while Loop ***/ 
 while ( counter8++ < 5 ) 
// ?0000: 
//        MOV   R17, R16        ; Copy Contents of R16 to R17 
//        INC   R16             ; Increment R16 
//        CPI   R17, 5          ; Compare R16 with Immediate 
//        BRNE  ?0000           ; Branch if Not Equal to Zero 
 
 
 counter8 = 5; 
//        LDI   R16, 5          ; Initialize R16 
 
 /*** Example: do...while Loop ***/ 
 do 
 { 

} while ( --counter ); 
// ?0001 
//        DEC   R16             ; Decrement R16 
//        BRNE  ?0001           ; Branch if Not Equal to Zero 
 
 /*** Example: for Loop ***/ 
 for ( counter8 = 0; counter8 < 5; counter++) { } 
// ?0002: 
//        MOV   R17, R16        ; Copy Contents of R16 to R17 
//        INC   R16             ; Increment R16 
//        CPI   R17, 5          ; Compare R16 with Immediate 
//        BRCC  ?0003           ; Branch if Cary Flag Cleared 
//        INC   R16             ; Increment R16 
//        RJMP  ?0002           : Relative Jump 
// ?0003: 
} 
 
 
The loops in Example 8 all perform the same task just using different loops or 
algorithms.  Each loop is executed five times.   The most efficient loop is the do…while 



loop with pre-decrement, closely followed by the generic while loop with post-increment.  
As a general rule, do…while loops are the most code efficient, however infinite loops are 
most efficiently implemented using for (;;) { }.   Loop counters are generally most 
efficient when pre-decremented or post-incremented, as branches are dependent upon 
the status flags after decrement/increment. 
 
 
Mixing C and Assembly 
 
Most compilers provide the feature of incorporating mixing assembly along with ones 
high-level C source code.  Mixing assembly allows the embedded engineer to code a 
specific function, sub-routine, interrupt service routine, etc. in assembly while 
programming the remaining source in a high-level language.  This feature is can be 
beneficial depending on the application, a timing sensitive loop or routine can be easily 
created mixing assembly and C.  Careful planning needs to be taken considering the 
resources of the microcontroller, such as scratch registers and data memory, when 
mixing assembly.  If one plans on mixing assembly one should read the compiler’s 
manual for proper handling of assembly.  Example 9 shows a simple assembly example 
where the assembly resides in a secondary file included upon compile time. 
 
 
Example 9:  Mixing C and Assembly 
 
#include <ioavr.h> 
 
extern void get_port ( void );   /* Prototype for ASM Function */ 
 
__C_task void main ( void ) 
{ 
      DDRD = 0x00;               /* Initialize PORTD as Output */ 
      DDRB = 0xFF;               /* Initialize PORTB as Inputs */ 
 
      for (;;)                   /* Infinite Loop */ 
         get_port();             /* Call the ASM Function */ 
} 
 
 
NAME get_port 
      #include <ioavr.h>         ; #include Must be within the Module 
      PUBLIC get_port            ; Declare Symbols to be Exported to C 
      RSEG CODE                  ; This Code is Re-locatable, RSEG 
 
get_port:                        ; Label, Start Execution Here 
      IN   R16, PIND             ; Read in the PIND Value 
      SWAP R16                   ; Swap the Upper and Lower Nibble 
      OUT  PORTB, R16            ; Output the Data to PORTD 
      RET                        ; Return to the main Function 
END 
 
 
Alternatively one can use inline assembly.  Inline assembly simply inserts the supplied 
assembler statement inline.  These statements can incorporate both instruction and 
register mnemonics, constants, and/or variables.  One should note however that utilizing 



inline assembly severely handicaps the compliers capability of performing optimizaion.  If 
coding in assembly is required, it is recommended to use the approach presented in 
Example 9 as optimization is sacrificed.  The following code snippet demonstrates how 
one would implement the get_port function from Example 9 using inline assembly, it 
should be noted that inline assembly commands are compiler specific and would need 
change if one were to port the code to another compiler and/or architecture. 
 
 
asm (“ 
       get_port:\n 
           IN   R16, PIND\n 
           SWAP R16\n 
           OUT  PORTB, R16\n 
           RET\n 
     “); 
 
 
Conclusion 
 
One can see that coding embedded source in a high-level language rather than 
assembly is beneficial.  This paper was meant to provide an overview of the advantages 
of a high-level language while providing some tips on how to implement source code 
efficiently.  More information on the topics discussed in this paper can be found in either 
application notes available from microcontroller manufacturers and compiler vendors 
and syntactical information can generally be found from any C programming reference 
book available online or at your local bookstore.  Hopefully, when one writes their next 
project in a high-level language they remember and implement some of the optimization 
tips and topics presented in this paper. 
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